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Stem cells resident in adult tissues are principally quiescent, yet harbor enormous capacity for proliferation to achieve
self renewal and to replenish their tissue constituents. Although a single hematopoietic stem cell (HSC) can generate
sufficient primitive progeny to repopulate many recipients, little is known about the molecular mechanisms that
maintain their potency or regulate their self renewal. Here we have examined the gene expression changes that occur
over a time course when HSCs are induced to proliferate and return to quiescence in vivo. These data were compared
to data representing differences between naturally proliferating fetal HSCs and their quiescent adult counterparts.
Bioinformatic strategies were used to group time-ordered gene expression profiles generated from microarrays into
signatures of quiescent and dividing stem cells. A novel method for calculating statistically significant enrichments in
Gene Ontology groupings for our gene lists revealed elemental subgroups within the signatures that underlie HSC
behavior, and allowed us to build a molecular model of the HSC activation cycle. Initially, quiescent HSCs evince a state
of readiness. The proliferative signal induces a preparative state, which is followed by active proliferation divisible into
early and late phases. Re-induction of quiescence involves changes in migratory molecule expression, prior to
reestablishment of homeostasis. We also identified two genes that increase in both gene and protein expression
during activation, and potentially represent new markers for proliferating stem cells. These data will be of use in
attempts to recapitulate the HSC self renewal process for therapeutic expansion of stem cells, and our model may
correlate with acquisition of self renewal characteristics by cancer stem cells.
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Introduction full appreciation of the molecular regulation of stem cell self

renewal could illuminate the development of cancers (Sherr
Hematopoietic stem cells (HSCs) are the best-described 1996) as well as potentially inform strategies for in vitro stem

adult stem cell population at a phenotypic and functional cell expansion, which would have enormous clinical advan-

level. Recent attempts have been made to characterize their
molecular regulation by comparing their gene expression
profiles with those of other stem cell populations (Ivanova et
al. 2002; Ramalho-Santos et al. 2002; Fortunel et al. 2003).
These analyses of normal steady-state stem cells revealed so-
called stem cell signatures, but the overlap of genes that
universally defined “stemness” was extremely limited (For-
tunel et al. 2003). Here, we have focused on HSCs alone in
order to systematically examine one process, that of HSC self
renewal, comprising a cycle of quiescence, proliferation, and
reinduction of a dormant state.

In a normal adult, HSCs reside in the bone marrow, where
they are relatively inactive. Long-term HSCs divide infre-
quently to produce more proliferative short-term HSCs,
which in turn generate the lineage-committed progenitors
that manufacture the billions of differentiated hematopoietic
cells that daily enter the peripheral blood. One hallmark of
HSCs is their ability to rapidly proliferate in response to
stressors such as myelosuppressive chemotherapy or bone
marrow transplantation in order to quickly generate work-
horse progenitors as well as additional stem cells, which then
return to quiescence (Dixon and Rosendaal 1981). While this
expansion of HSCs occurs naturally in vivo, there is as yet
little understanding of the genes that control this process. A

@ PLoS Biology | www.plosbiology.org

tages. Thus, we sought to understand the molecular mecha-
nisms by which HSCs respond to an activating trigger, initiate
a program of cell division, and resume quiescence by
suppression of cell division.

Our approach was to examine the transcriptional profiles
of purified adult HSCs throughout a time course of induced
proliferation, and compare the gene expression in these cells
to that of naturally dividing fetal liver HSCs (FL-HSCs).
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Normal adult HSCs are largely nondividing, with around
1%-3% in cycle and approximately 90% in GO (Morrison and
Weissman 1994; Goodell et al. 1996; Bradford et al. 1997;
Cheshier et al. 1999). A single injection of the pyrimidine
analog 5-fluorouracil (5FU) Kkills cycling hematopoietic cells,
bringing the spared quiescent HSCs into cycle to repopulate
the depleted bone marrow (Van Zant 1984; Harrison and
Lerner 1991; Randall and Weissman 1997). HSC proliferation
proceeds in a time-dependent manner, peaking 5 to 6 d after
treatment, with approximately 20% of HSCs in cycle, before
returning to normal around day 10 (Figures 1A and S1;
Randall and Weissman 1997). Changes in the cell surface
profile concomitant with cell cycle activation have been
observed. The receptor tyrosine kinase c-Kit, normally
expressed at high levels in quiescent HSCs, is down-regulated
after 5FU treatment (Randall and Weissman 1997). Con-
versely, the markers Macl and AA4.1, absent on normal
HSCs, are expressed at low levels after 5FU treatment
(Szilvassy and Cory 1993; Randall and Weissman 1997).
During the latter part of mammalian embryonic develop-
ment, HSCs reside in the fetal liver, where they undergo a
massive expansion prior to entering the bone marrow.
Approximately 30% of murine FL-HSCs are in cycle
(Morrison et al. 1995), and similar to bFU-activated HSCs
(BFU-HSCs), they express AA4.1 and Macl (Jordan et al. 1990;
Morrison et al. 1995). Given the similarities between 5FU-
activated HSCs and FL-HSCs, we hypothesized that they
would share similar gene expression profiles vis-a-vis pro-
liferation and that simultaneous comparison of FL-HSCs,
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adult quiescent HSCs, and 5FU-HSCs would define genes
specifically involved with HSC proliferation. Indeed, we
defined both proliferation and quiescence signatures for
HSCs, validated these groupings using Gene Ontology (GO)
classifications, and created a model of the HSC proliferation
cycle.

Results

Experimental Design

Our overall approach was to isolate highly purified HSCs in
the states described above, obtain their gene expression
profiles using Affymetrix microarrays, and apply statistical
and bioinformatics methods to facilitate comparisons among
the samples. To construct a profile of the time-dependent
induction of HSC proliferation, 5FU-HSCs were isolated at
days 0, 1, 2, 3, 6, 10, and 30 after treatment.

Adult quiescent HSCs and b5FU-HSCs were isolated
according to Hoechst 33342 efflux, termed the side popula-
tion (SP) and Scal™ characteristics (Goodell et al. 1996) (Table
1; Figure S2A). Further analysis of these populations revealed
them to be highly homogeneous with more than 97% having
Scal*/Lineage™ characteristics (Figure S3). Transplantation
into lethally irradiated hosts, performed for both quiescent
and 5FU-treated SP/Scal® cells, confirmed their stem cell
activity (data not shown). FL-HSCs were isolated by FACS for
AA4.1", c-Kit", Scal™, and Lineage™ characteristics from
embryos 13.5-14.5 d postcoitus (Jordan et al. 1990) (Table 1;
Figure S2B.) RNA probes were prepared from HSCs using two

Figure 1. P-Sig and Q-Sig Defined by Gene
Expression Levels in HSCs in Different
Stages of Cell Cycle

(A) Graphic depicting the changes in
bone marrow cellularity and number of
HSCs in cell cycle following 5FU treat-
ment (adapted from Harrison and Lern-
er 1991; Randall and Weissman 1997).
(B) Schematic of 5FU-HSC time course
analysis. The genes that change over the
time course can be split into two groups
based on the day of maximum expres-
sion (TOM).

(C) Schematic of pair-wise comparison
between quiescent adult HSCs and FL-
HSCs, showing groups of genes either
up-regulated in the quiescent adult cells
or up-regulated in the cycling FL-HSCs.
(D) Genes that were both up-regulated in
FL-HSCs and were in the proliferation
group composed the P-sig. The P-sig
shows 94% overlap with the group of
genes that were up-regulated in FL-HSCs
and changed over the time course.

(E) Genes that were both in the quies-
cence group and up-regulated in adult
HSCs were termed the Q-sig. The Q-sig
overlaps 96% with the set of genes that
were up-regulated in adult HSCs and
changed over the time course.

(F) Overlap of the ST-HSC signature
with P-sig revealed 73% in common,
defining the common P-sig.

(G) Overlap of the LT-HSC signature
with Q-sig revealed 58% in common and
defined the common Q-sig.

This figure is interactive online, and
provides contextual access to Tables
S1-S11.

DOL: 10.1371/journal.pbio.0020301.g001
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Table 1. Comparison of Phenotypic and Functional Characteristics of HSC Populations

HSC Characteristics LT-HSC 5FU-HSC FL-HSC ST-HSC®
Engraftment potential Long term?® Long term®< Long term® Short term
Scalexpression Positive Positive®* Positive® Positive
c-Kit expression High Low® Positive® Positive
Mac1 expression Negative® Low® Positive Low
AA4.1 expression Negative Positive® Positive® N.D.
Developmental stage Adult Adult 14 d.p.cf Adult
Tissue source Bone marrow Bone marrow Fetal liver Bone marrow
Hoechst efflux Positive® Positive Negative® Positive
Percent cycling 1%-3%" 20% 30%" N.D.
Percent of live cells 0.04% 0.01%-0.12% 0.03% 0.06%

@ Goodell et al. (1996)

® Randall and Weissman (1997)

€ Szilvassy and Cory (1993)

9 Jordan et al. (1990)

€ Morrison and Weissman (1994)

f Morrison et al. (1995)

9 Uchida (2004)

d.p.c,, days postcoitus, N.D., not determined.
DOI: 10.1371/journal.pbio.0020301.t001

rounds of in vitro transcription and applied to Affymetrix
MGU74Av2 microarrays. Hybridization, scanning, and pro-
duction of raw data files were performed according to
standard protocols. To correct raw intensity values for
systemic variables such as fragmentation efficiency, hybrid-
ization conditions, and scanner effects, microarrays were
normalized before intensity values were converted to gene
expression measures. Normalization and model-based ex-
pression measurements were performed with GeneChip
Robust Multichip Analysis (Wu et al. 2003), which is more
precise and accurate in estimating fold changes than
Affymetrix MAS 5.0 and the recently published Robust
Multichip Analysis method (Irizarry et al. 2003), and is
available as part of the open-source Bioconductor project
(http:/lwww.bioconductor.org). Further statistical analysis was
performed in R (http:/lwww.r-project.org). Quality control
was performed both pre- and postnormalization. Briefly,
chips were inspected for spatial defects, intensity outliers,
and amplification bias. After screening, the two chips
representing biological replicates with the highest correlation
®R? = 0.97-0.99, average = 0.98) in each group or time point
were selected for further analysis. Raw data and normalized
expression data are available for download from Gene
Expression Omnibus (http://ncbi.nlm.nih.gov/geo) or
http://ffranklin.imgen.bcm.tmc.edu/SCGAP/downloads/
SPTimecourse. Normalized expression data along with all
filtering criteria used to obtain our gene lists are available in
Table S46. A gene-by-gene query tool is available at http://
franklin.imgen.bcm.tmc.edu/PLoS.

Time of Maximum Grouping Reveals Strong Time
Ordering to Expression Data

We began our analysis of the 5FU time course by
identifying genes that varied over time. This was accom-
plished by fitting smooth curves to the expression profiles
using regression analysis with time as a continuous variable.
ANOVA on these profiles revealed 1,488 genes that showed a
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significant change over the time course (p < 0.05). Principle
component analysis revealed that the time course data
consisted of two major groups: genes that up-regulated and
genes that down-regulated over the time course (data not
shown). We further explored the expression data with
unsupervised (k-means) clustering and observed that when
the number of predefined groups was low (2-3), only the
overall pattern of up- or down-regulation was discernable;
however, as we increased the number of groups (4-8), more
complex patterns with peaks early or late in the time course
were visible (data not shown). Since the 5FU treatment
consisted of a single dose administered at time zero, we
speculated that the downstream effects of 5FU treatment
would be represented by groups of genes whose gene
expression profiles showed time-ordered peaks propagating
through the time course. The expression profile of groups
created by k-means clustering supported this hypothesis.
Therefore, to more directly delineate these peaking subsets,
we sorted the genes into groups by their time of maximum
expression (TOM). Strikingly, these groups had two predom-
inant patterns over the time course: one group up-regulated
with 5FU treatment with a TOM at day 2, 3, or 6, and one
group down-regulated, exhibiting TOM at day 0, 1, 10, or 30
(Figure 1). By correlating these patterns to HSC cell cycle
status after 5FU treatment (Figure 1A), we assigned the up-
regulated genes to the “proliferation” group (680 genes) and
the down-regulated genes to the “quiescence” group (808
genes) (Figure 1B).

To validate these time-dependent expression-pattern-
based gene groupings, we compared our quiescence and
proliferation groups to the genes differentially expressed
between quiescent adult HSCs and FL-HSCs. The latter were
identified in a pair-wise comparison between adult HSCs
and FL-HSCs that revealed 1,772 genes that were at least 2-
fold differentially expressed (Figure 1C). Since FL-HSCs are
in cycle, as are 5FU-HSCs, a list of genes expressed in
common between the time-course-defined proliferation
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group and those up-regulated in FL-HSCs should specifically
contain genes involved in HSC proliferation, eliminating
genes involved in interacting with their very different source
environments. We designated this list of 338 genes our
“proliferation signature” (P-sig; Figure 1D). Likewise, the
298 genes in common between the time-course-defined
quiescence group and those up-regulated in adult HSCs
relative to FL-HSCs defined our “quiescence signature” (Q-
sig; Figure 1E). In Figure 2B and 2D, each gene within the P-
sig and Q-sig is represented by a single line, and its relative
expression along the time course is represented by the
intensity of the colors on the heat map. Genes discussed
later in the text are highlighted. To examine whether similar
signatures could be generated without the TOM groupings
(which could potentially introduce a bias), we examined the
list of genes overlapping between the set of those up-
regulated in FL-HSCs and the entire set of genes that
change during the time course (see Figure 1D). A striking
94% of the P-sig overlaps with these genes. Similarly, 96%
of genes in the Q-sig overlap with the set of genes that are
up-regulated in adult HSCs and change over the entire time
course (see Figure 1E). In other words, overlapping the pair-
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wise comparison with our expression-pattern-based groups,
i.e,, TOM groupings, identified essentially the same genes as
did overlapping the time course with quiescent adult HSC
and FL-HSC data, thus correlating, at the gene level, the
TOM groupings to populations with known biological
differences.

We then plotted the average pattern for the P-sig and Q-sig
and examined their component TOM groups (see Figure 2).
The patterns of genes in the TOM subgroups of the P-sig were
very similar, with an overall off-on-off pattern that corre-
sponded to the number of HSCs in cycle after 5FU treatment
(see Figures 1A, 2A, and 2B). Although mutually exclusive
gene lists, TOM 0 and 30 were almost identical in pattern and
were highly similar at the functional level (see below). Genes
in TOM 1 and 10 shared the overall pattern of down-
regulation with the Q-sig, but showed early and late peaks,
respectively, the significance of which is discussed below.
Overall we found the individual TOM groups to be highly
coherent with a high degree of correlation between the
individual genes and the mean profile of each group (Table

S47).

Figure 2. P-Sig and Q-Sig Show Patterns of
Activation and Down-Regulation with Re-
spect to Cell Cycle Status

(A) Averaged pattern of P-sig gene
expression over the 5FU time course
plotted in solid lines, with the contribu-
ting TOM subgroups plotted in dashed
lines.

(B) Heat map of each gene in P-sig over
the 5FU time course showing TOM
subgroups in brackets.

(C) Averaged pattern of Q-sig gene
expression over the 5FU time course
plotted in solid lines, with the contribu-
ting TOM subgroups plotted in dashed
lines.

(D) Heat map of each gene in Q-sig over
the 5FU time course showing TOM
subgroups in brackets.

For both heat maps, relative expression
levels are displayed according to color
intensity, blue (lowest) to yellow (high-
est).

This figure is interactive online, and
provides contextual access to Tables
S12-S18.

DOI: 10.1371/journal.pbio.0020301.g002
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Q-sig and P-sig Overlap with Published Data to Give
“Common” Signature

Encouraged by these results, we performed a parallel
analysis on a raw dataset from Akashi et al. (2003), who
compared the transcriptional profiles of adult long-term
HSCs (LT-HSCs) and short-term HSCs (ST-HSCs). Although
isolated by different methods, the Rho'" KTSL cells isolated
by Akashi et al. and our quiescent adult HSCs are functionally
equivalent (Wolf et al. 1993; Goodell et al. 1996). ST-HSCs
have the ability, as do LT-HSCs, to contribute to all lineages
of the hematopoietic system, but are not able to maintain
long-term engraftment in irradiated hosts. They are also
more in cycle than LT-HSCs and express low levels of Macl
(Table 1) Morrison and Weissman 1994; Cheshier et al. 1999).
We therefore suspected that the genes 2-fold differentially
expressed between LT-HSCs and ST-HSCs, approximately
300 and 600 genes, respectively, would be enriched for
quiescence and proliferation genes, respectively. When we
compared these lists with the list of genes changing after 5FU
treatment, we observed that almost all the genes in common
between LT-HSC and time course lists were in the quiescence
group list. Similarly, most of the genes in common between
the ST-HSC and the time course lists were in the prolifer-
ation group list. This confirmed that many of the gene
expression changes that occur between LT-HSCs and ST-
HSCs are the same changes that occur after activation of HSC
with 5FU, and we designated these list intersections as the L'T-
HSC signature and ST-HSC signature, respectively.

A natural question was whether the Q-sig and P-sig
described above would have any overlap with the LT-HSC
signature and ST-HSC signature groups. Remarkably, 58% of
the genes were in common between LT-HSC signature and
the Q-sig, and 73% of the genes were in common between ST-
HSC signature and the P-sig. We named these highly selected
lists (53 and 118 genes, respectively) the “common quiescence
signature” (cQ-sig) and “common proliferation signature”
(cP-sig) (Figure 1F and 1G). As we show below, these
“common” signatures derived from the three-way intersec-
tion of HbFU-HSC data, adult-HSC-versus-FL-HSC data, and
LT-HSC-versus-ST-HSC data were highly enriched for genes
related to HSC proliferation.

Novel Uses of Gene Ontologies Allowed Functional
Validation of Gene Groupings

To investigate the biological significance of the groupings
described above, we developed novel methods for utilizing
the GO annotations (Ashburner et al. 2000) (http:/lwww.
geneontology.org) to analyze the content of gene lists. The
GO is a controlled vocabulary that describes gene functions
in their cellular context and is arranged in a quasi-
hierarchical structure from more general to more specific.
Since the vocabulary of annotations is fixed, it allows for
functional comparisons of mutually exclusive gene lists, such
at the TOM groups. We began by mapping each gene in the
lists being analyzed to the GO tree structure. This allowed us
to count the number of times each gene hit at or below any
particular node in the GO structure. Once the lists were
mapped, we were able (a) to calculate a measure of similarity
(distance) between the lists using the distributions of each list
across the various levels of the GO tree and (b) to calculate
the enrichment of the various GO categories in each list
(Figure 3A-3C).
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We clustered the gene lists based on this distance metric
(Figure 3A). As can be seen, GO-based clustering recapitu-
lated the previous expression-pattern-based groupings: TOM
days 0, 1, 10, and 30 clustered with the list of genes up-
regulated in adult HSCs; and TOM days 3 and 6 clustered
with those genes up-regulated in FL-HSCs. We calculated a
probability of 0.003 that we could arrive at the grouping
pattern shown by chance. Importantly, this indicated that the
content of these clusters, as defined by their biological
process using GO, was highly similar despite the nonoverlap-
ping nature of the TOM groups. Although recapitulating the
expression-pattern-based groupings, our GO-based cluster-
ing also revealed that TOM 1 has a unique signature amongst
the quiescence cluster, suggesting a distinctive role for the
genes in this group in governing HSC quiescence (Figure 3A).

Our strategy for mapping gene lists to the GO structure
also allowed us to calculate statistically significant enrich-
ments of particular GO categories within our gene lists. We
achieved this by mapping the whole microarray (approx-
imately 12,000 genes) onto the GO structure and then
calculating fold enrichments for each GO category in our
lists relative to the microarray. We expected to find differ-
ences between the Q-sig and P-sig in the frequencies of
antiproliferative and proproliferative genes, and verification
of this served as proof-of-principle for our experimental
design. Indeed, we found the GO category “regulation of cell
cycle” (containing genes like the antiproliferative genes p21
[cyclin-dependent kinase inhibitor 1A] and GADD45B [Growth arrest
and DNA-damage-inducible 45, beta]) to be 2.1-fold increased in
the Q-sig over the total array (Figure 3B). Moreover, the
category “DNA replication” was about 5-fold greater in the P-
sig, while this category was absent in Q-sig (Figure 3B).

Intriguingly, the GO group “defense response,” containing
many of the H2 genes of the MHC class I family, was slightly
enriched in the Q-sig, but was depleted by over 5-fold in the
P-sig (Figure 3B). Signal transduction molecules such as those
in the GO groups “protein kinase cascade” were enriched 4.3-
fold in the Q-sig (Figure 3B). The GO group “ATP synthesis
coupled electron transport” was enriched almost 21-fold in
the P-sig, which correlates with the high energy requirements
of cell division (Figure 3B).

As discussed above, our results and the data from Akashi et
al. (2003) have remarkable overlap at the gene level. Using the
common signature lists, we observed further refinements in
key GO categories. For example, “cell cycle” genes were less
than 4% of all genes on the chip, yet they represented 21% of
the genes in the common P-sig (Figure 3C). Progressive
enrichment in “cell-cell adhesion” was also observed (Figure
3C). Although almost 19% of the genes in our “common”
signatures have no previously defined biological process,
given the remarkable enrichment of proliferation-related
genes in our common signatures, we can infer that they also
may be involved in HSC proliferation.

TOM Analysis Uncovered Orderly Progression of HSC
Activation

We further utilized the GO-based analysis of the TOM
groups within the Q-sig and P-sig to gain insight into the
biological activities of HSCs at these time points. Because of
the high similarity of TOM 0 and 30 in both expression
pattern and GO categorization, we treated them as a single
group. “Regulation of transcription” was enriched 1.5-fold in
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TOM 0 and 30 and comprised 16 genes, including several key
transcriptional regulators of cell cycle such as the oncogenes
c-fos and c-maf, as well as the global transcriptional repressor
histone deacetylase 5.

The GO categories “regulation of cell cycle,” “cell-cell
adhesion,” and “defense response” were specifically enriched
in TOM 1 (approximately 4-fold each). Many genes in these
groups are negative regulators of cell cycle, such as p21, Tob 1/
APROG6 (Transducer of ErbB2.1-1), Big3/APRO4 (B-cell trans-
location gene 3), cyclin G1, GADD45P, and melanoma antigen, family
D, 1. Prior experiments have shown a decrease in the number
of HSCs in cycle during the first day after 5FU treatment as
compared to untreated HSCs (see Figure 1A; Randall and
Weissman 1997). We therefore concluded that many of the
genes in TOM 1 are responsible for this momentary pause in
cell cycle, and this explained why these genes were initially
up-regulated and then sharply down-regulated as rapid HSC
proliferation began (see Figure 1A and 2C).

In the P-sig, TOM 3 and TOM 6 showed astonishingly
different GO contents despite their similar expression
patterns (see Figure 2A). Genes in the GO category “cell
cycle” identified in the P-sig are concentrated in TOM 3.
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Specifically, genes in both “DNA replication” and “M phase”
were enriched about 18-fold and 10-fold, respectively,
indicating a preparation for cell division. TOM 6 was
enriched almost 3-fold in genes involved with biosynthesis
of many essential cellular components, such as ATP (8.8-fold),
nucleotides (5.6-fold), and proteins (2.4-fold). These data
suggest early and late phases of proliferation, represented by
the genes in TOM 3 and TOM 6, respectively.

As discussed above, by day 10 after 5FU treatment the
number of HSCs in cycle is reduced to near pretreatment
levels (see Figure 1A). Although the signals responsible for
restoring quiescence remain elusive, we believe that this
process may be mediated by JAK/ISTAT and other signaling
pathways. Overall, the GO category “signal transduction”
showed approximately 2-fold enrichment in the TOM day 10
list. SOCS3 (Suppressor of cytokine signaling 3), whose product
suppresses responses to growth factors in part by inhibiting
JAKISTAT signaling, was most highly expressed at day 10,
along with STAT3 and STAT6. JAKISTAT signaling has been
implicated in regulation of proliferation and differentiation
of various hematopoietic cell types.
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Chromosomes 2, 7, 12, and 17 Contain HSC Proliferation
Control Regions

Our expression data can be combined with data from the
mouse genome projects to correlate gene expression changes
observed after 5FU treatment with higher order genome-wide
regulation. For example, we analyzed the contents of Q-sig
and P-sig for clustering on particular chromosomes. Four
chromosomes exhibited significant enrichment between the
two signatures: Chromosomes 12 and 17 were enriched in the
Q-sig, and Chromosomes 2 and 7 were enriched in the P-sig
(see Figure 3D). Earlier work identified quantitative trait loci
(QTL) on Chromosomes 17 and 7 associated with the control
of HSC frequency and proliferation of hematopoietic
progenitors, respectively (Phillips et al. 1992; Geiger et al.
2001). p21, a prototypic member of the Q-sig, was specifically
found within a QTL on Chromosome 17 associated with
regulating HSC frequency. This region is syntenic with
human Chromosome 6p21, a known hot spot for trans-
locations linked to leukemias and lymphomas (Huret et al.
1986; Johansson et al. 2002).

Microarray Gene Expression Changes Reflect Changes in
Protein Expression and HSC Behavior

In order to determine whether some of the observed gene
expression changes were accompanied by measurable differ-
ences in protein expression, we identified two genes whose
expression changed over time and whose product could be
tracked using flow cytometry. Gene expression of Scal, a
known marker of HSCs, showed significant increase after 5FU
treatment despite having a high starting level (Figure 4A).
Flow cytometric analysis showed that Scal antigen expression
was also distinctly higher after 5FU (Figure 4B). Scal-null
mice have a defect in HSC self renewal that has been
interpreted as a loss of proliferative capacity (Ito et al. 2003).
Our data support this finding since maximal expression of
Scal both at the gene expression and protein level was at day
6/7 post BFU treatment. We also analyzed CD48, a cell
adhesion molecule previously associated with T-cell activa-
tion and proliferation (Kato et al. 1992; Chavin et al. 1994;
Gonzalez-Cabrero et al. 1999), which peaked in gene
expression 6 d after H5FU treatment (Figure 4A). By flow
cytometry, CD48 antigen was detected on quiescent HSCs,
but exhibited a substantially higher level of expression at the
height of HSC proliferation (Figure 4B). To determine
whether high levels of CD48 antigen on HSCs coordinated
with proliferation in a similar fashion as on T-cells, we
performed cell cycle analysis of CD48" and CD48~ HSCs.
Further characterization of CD48" HSCs 6 d post 5FU
revealed a greater than 3-fold enrichment in the number of
cells in cycle over CD48™ HSCs (Figure 4C). This finding is the
first report of a marker that enriches for cycling HSCs.

Discussion

Here we have identified proliferation and quiescence
signatures of HSCs. Our experimental design utilized a
combination of pair-wise comparisons and time course
microarray experiments. The pair-wise analysis allowed us
to find the genes different between quiescent and cycling
HSCs, while the time course data allowed us to order these
genes in a time-dependent manner. The power of our overall
methodology is reflected in the remarkable overlaps between
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Figure 4. Gene Expression Profiles Correlate with Protein Expression on
HSCs

(A) Gene expression over time. The actual observed values of each
replicate at each time point are shown in red, and the line connects
the predicted expression value at each time point based on our
regression analysis.

(B) Antigen expression on HSCs measured by flow cytometry. Gray
lines represent negative control, red lines represent protein
expression at day 0, and blue lines represent protein expression at
day 7.

(C) Cell cycle analysis of CD48~ and CD48" HSCs isolated 6 d post
5FU treatment.

DOI: 10.1371/journal.pbio.0020301.g004

the gene lists presented and those extracted from published
data (Akashi et al. 2003), in particular the common P-sig and
common Q-sig.

Applying a novel approach to utilizing the GO annotations,
we calculated the statistical significance of the enrichment of
particular GO categories in our lists. We also devised a new
method for calculating the distance between gene lists based
on the GO structure. This allows one to assess the functional
similarity, in “GO space,” of gene lists that may not have any
actual genes in common (such as our TOM groups).
Furthermore, since the GO vocabulary is not specific to any
species, this method allows for cross-species and cross-
platform comparisons of gene lists. Re-analysis of data from
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previous studies may reveal a functional stem cell signature in
GO space that was not evident at the gene level (Ivanova et al.
2002; Ramalho-Santos et al. 2002; Fortunel et al. 2003).

Applying GO analysis to the TOM groupings revealed
elemental subgroups within the signature lists that allowed us
to construct a molecular model of the HSC activation cycle.
The majority of unperturbed HSCs reside in a quiescence
niche and express receptors, for example the metabolism-
and ageing-associated receptor IGFIR and the receptor
tyrosine kinase Tiel, that allow them to respond to multiple
mitogenic signals (Figure 5A). They also express high levels of
transcription factors, such as c-fos and GATA-2, that enable
swift activation of HSCs. This expression profile, found in the
TOM 0 and 30 groups, suggests that although adult HSCs are
quiescent, they are in a “state of readiness” to react to
changes in their environment.

Immediately after activation is triggered (here by 5FU),
HSCs enter a superquiescent “pause.” This state, found at
TOM 1 and also observed by cell cycle analysis (Randall and
Weissman 1997), is mediated by antiproliferative genes such
as Tobl, p21, and Btg3 (Figure 5B). Interestingly, p21-null mice
have defects in HSC self renewal (Cheng et al. 2000). We
observed up-regulation of TIMP3 and the serine proteinase
inhibitor A-3 g, which inhibit cell migration (Qi et al. 2003).
At least six interferon-y-induced genes were also up-
regulated at this point, suggesting that HSCs are responding
to proinflammatory signals. We speculate that the pause in
HSC proliferation and migration allows HSCs to survive 5FU
cytotoxicity while the cells simultaneously “prepare” to
proliferate and repopulate the bone marrow to ensure
survival of the animal.

In the early phase of proliferation starting at day 3, when
increased numbers of HSCs in cell cycle are first detected
(Randall and Weissman 1997), HSCs have committed to cell
division, as can be seen by the maximal expression of genes

HSC Activation Cycle

A. State of Readiness Siriss

Complete Recovery to

Cycling and Quiescent HSC

involved in DNA replication and repair (Figure 5C). At day 6,
the late phase of proliferation, when the greatest number of
HSCs are in cycle, we see expression of genes involved with
energy production, indicating an overall increase in meta-
bolic activity in the HSCs (Figure 5D). Prior work has linked
HSC mobilization with proliferation (Wright et al. 2001;
Heissig et al. 2002), and our data indicate that the opposite is
also true: to proliferate, HSCs need to move out of their
quiescence niche and into a proliferative zone (Figure 5C and
5D). We see the up-regulation of a4-integrin at day 3 followed
by a dramatic decrease at day 6 post 5FU treatment.
Experiments that block a4-integrin function by blocking
antibodies or via knockout technology have previously shown
that down-regulation induces increased mobilization and
delays recovery after 5FU treatment (Craddock et al. 1997,
Scott et al. 2003). The gene expression pattern displayed by
a4-integrin predicts that down-regulation of a4-integrin is
necessary for 5FU-induced proliferation. As stated above,
down-regulation of a4-integrin is sufficient to alter recovery
of bone marrow progenitors after 5FU treatment, supporting
the link between HSC proliferation and migration in our
model. Down-regulation of c-Kit has also been linked to
mobilization of HSCs (Heissig et al. 2002), and its expression
is lowest at day 6 post treatment.

In order to “reset quiescence,” HSCs need to return to
their niche (Figure 5E). This process begins at day 10, when
the number of cycling HSCs falls and HSCs express the high
levels of specific antiproliferative genes such as Bigl and
several components of the JAK/STAT signal transduction
pathway. Both SOCS3 (Soriano et al. 2002) and STAT3 (Levy
and Lee 2002) have been associated with both positive and
negative regulation of proliferation and differentiation of
various hematopoietic cell types. Simultaneous expression of
SOCS3, STAT3, and STAT6 suggests a complex regulation of
HSC quiescence, but earlier work examining STAT signaling

Figure 5. Model of HSC Activation Cycle

(A) Normal HSCs reside in a quiescent
niche in a “state of readiness” exempli-
fied by the indicated genes.

(B) Upon stress (5FU treatment), HSCs
“pause” by remaining quiescent and in
their niche while they “prepare” to

state of readiness e e o proliferate. HSCs receive signals from
&Y OV Quiescence Niche proinflammatory cytokines at this point.
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c-fos, NFATC, GATAZ, signals that is divisible into early (C) and late (D)
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increase in expression of genes involved
in DNA replication, repair, and cell
migration molecules that allow move-
ment of HSCs from the quiescence niche
to the proliferative zone.

(D) “Late proliferation” is marked by
expression of many cell cycle genes as
well as many energy pathway molecules.
(E) Re-induction of quiescence involves
changes in migratory molecule expres-
sion, which leads to return of cells to
their quiescence niche, as well the
expression of antiproliferative genes.
DOL: 10.1371/journal.pbio.0020301.g005

Quiescence Niche

e
Ki67, Chek1,
o4 integrin

October 2004 | Volume 2 | Issue 10 | e301



in other stem cell populations gave us insight into the role of
JAKISTAT signaling in HSCs. Expression of STATs has been
shown to establish and maintain stem cell pluripotency in
embryonic stem cells (Raz et al. 1999). However in Drosophila
testes, JAK/ISTAT activation is crucial for stem cell self
renewal; perturbations by both loss and increase in expres-
sion lead to dramatic changes in the stem cell compartment
(Kiger et al. 2001). Notably, activation of the JAK/STAT
pathway by PKD1 induces cell cycle arrest through p21-
dependent mechanisms (Bhunia et al. 2002). This supports
our hypothesis that JAK/STAT signaling is important for
inducing quiescence at day 10, since we have shown that p21
is likely involved in HSC cell cycle arrest. The involvement of
JAKISTAT signaling in both stem cell pluripotency and HSC
quiescence suggests that these processes may be linked in
HSCs.

Endoglin, also found in the TOM 10 group, is known to be
expressed on both murine (Chen et al. 2002) and human
(Pierelli et al. 2001) HSCs, and has been shown to decrease
cell migration by increasing cell-cell adhesion (Liu et al.
2002). Its expression pattern was negatively correlated with
5FU-HSC proliferation: it was lowest at day 6 after 5FU
treatment, and highest at day 10. Our data suggest that HSC
proliferation requires mobilization from the niche, and that
restoration of quiescence is accompanied by a return to the
niche. Endoglin’s expression pattern makes it an ideal
candidate for mediating HSC-to-niche homing and long-
term association.

Our model derived from gene expression profiles corre-
lates well with the literature on HSC cell cycle and
mobilization. Although other models of HSC mobilization
and 5FU treatment have previously been proposed (Heissig et
al. 2002), our data allow association of specific genes with
particular stages of HSC activation and recovery. Our model
predicted that CD48 might preferentially mark cycling HSCs,
and our cell cycle analysis of CD48" and CD48~ HSCs
confirmed this prediction. Our model also postulates the
presence of “quiescence” and “proliferative” zones in the
bone marrow; osteoblasts may be a component of this
quiescence niche (Calvi et al. 2003; Zhang et al. 2003).

In summary, we present proliferation and quiescence
signatures for HSCs that show remarkable overlap with
published literature. In addition, this study revealed new,
uncharacterized genes whose role in HSC self renewal needs
to be explored: some of these genes may play as yet
undiscovered roles in the development of cancer or may aid
in the manipulation of stem cells for therapeutic uses. Finally,
harnessing the GO using novel bioinformatics approaches to
analyze our data at a global level allowed us to propose a
model of the HSC activation cycle.

Materials and Methods

Flow cytometry. For quiescent adult HSCs and 5FU-HSCs, whole
bone marrow (WBM) was collected from the femurs and tibias of ten
to fifteen 8- tol12-wk-old normal or 5FU-treated C57Bl/6 mice. For
5FU treatment, mice were injected intravenously with a single dose of
5FU (150 mglkg body weight; Sigma, St. Louis, Missouri, United
States) and killed at day 0, 1, 2, 3, 6, 10, or 30 after injection. Day 0
mice were untreated, and day 1 WBM was isolated 17-19 h after
injection; all subsequent days were in 24-h increments. WBM was
stained with Hoechst 33342 to identify the SP cells (Goodell et al.
1996) and then magnetically enriched for Scal™ cells (autoMACS;
Miltenyi Biotec, Sunnyvale, California, United States). Cells were
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stained with a biotinylated Scal antibody (clone E13-161.7; BD
Pharmingen, San Diego, California, United States) and visualized with
strepavidin-PE (Molecular Probes, Eugene, Oregon, United States).
Scal-enriched WBM was sorted for the SP profile and Scal positivity
on a MoFlo (Cytomation, Fort Collins, Colorado, United States).
Representative flow diagrams of cell sorting can be found in Figure
S2A. Phenotypic purity was typically 95% or greater. Regarding
functional purity of the sorted populations, evidence from multiple
sources in our lab and others suggests that both normal bone marrow
and 5FU-treated SP cells are very highly enriched for HSCs. The
whole SP contains both LT-HSCs and ST-HSCs, but has very limited
contamination from committed progenitors or differentiated hem-
atopoietic cells.

For FL-HSCs, fetal livers were removed from embryos 13.5-14.5 d
postcoitus and dissociated (Jordan et al. 1990). Fetal liver cells were
magnetically enriched for c-Kit" cells using c-Kit-biotin (clone 2B8,
BD Pharmingen) and visualized with strepavidin-APC (Molecular
Probes). The c-Kit-enriched cells were stained with a lineage cocktail
consisting of cychrome-conjugated CD4 (L3T4), CD8 (53-6.7), B220
(RA3-6B2), GR1 (RB6-8Cb), and Terl119 (Ter119) as well as Scal-PE,
and AA4.1-FITC (all antibodies from BD Pharmingen). FL-HSCs were
identified as negative for the lineage markers and positive for Scal, c-
Kit, and AA4.1 (see Figure S2B). Percentage of enriched cells was
between 0.02% and 0.04% of total cells, with a purity of
approximately 90%.

For protein expression validation, SP cells from days 0 and 7
post 5FU treatment were analyzed for expression of Scal-FITC, c-
Kit-APC, and CD48-PE (HM48-1, BD Pharmingen) by flow cy-
tometry.

RNA isolation and amplification. Total RNA was isolated from
approximately 35,000-70,000 sorted HSCs using the RNageuous kit
(Ambion, Austin, Texas, United States). All samples were then
digested with DNasel to eliminate residual genomic DNA, and
extracted with phenol:chloroform. Total RNA was then subjected to
two rounds of linear amplification using T7-based in vitro tran-
scription (IVT) (MessageAmp, Ambion). Briefly, total RNA was
reverse transcribed with an oligo-dT primer containing a T7
promoter sequence at the 5 end (oligo-dT-T7 primer). To prime
second-strand synthesis, RNA-cDNA hybrids were digested with
RNaseH, producing patches of single-stranded cDNA. The second
strand was filled in by DNA polymerase. The double-stranded cDNA
served as a template for T7 RNA polymerase-driven IVT, which
yielded up to 100X the starting mRNA pool. RNA probes were labeled
in the second round of IVT with biotinylated nucleotides (Enzo
Biotech, Farmington, Connecticut, United States). The second round
of amplification was performed using random primers for first-strand
synthesis and the oligo-dT-T7 primer to prime second-strand
synthesis. Overall amplification was estimated to be 10,000-fold or
greater (Gallardo et al. 2003).

Microarray hybridization. Affymetrix (Santa Clara, California,
United States) MG-U74Av2 chips were hybridized with fragmented,
biotinylated aRNA according to standard protocols. Chips were then
washed and counterstained using PE-conjugated strepavidin. Signal
was amplified using the Affymetrix protocol for antibody amplifica-
tion. The raw image (.DAT) and intensity (.CEL) files were generated
using MAS 5.0 software (http://[www.affymetrix.com).

Microarray analysis. Chip quality was assessed using various
parameters outputted by a combination of the following software
packages: MAS 5.0 (http:/lwww.affymetrix.com), BRB Array tools
(http:/Nlinus.nci.nih.gov/iBRB-ArrayTools.html), and Bioconductor ver-
sion 1.2 (http://lwww.bioconductor.org). Twenty-one chips were
hybridized and analyzed, but only 16 (approximately 75%) passed
our quality control standards (scale factor < 10, 8’-to-5" ratio < 25,
R? > 0.97). Normalization and model-based expression values were
calculated using the GeneChip Robust Multichip Analysis method
(Wu et al. 2003), available as part of the Bioconductor package.

Statistical analysis. Time-dependent expression profiles for each
gene were analyzed by regressing the normalized expression values
using polynomial least squares regression. ANOVA was performed on
the coefficients of regression to identify genes with significant time
patterns (p < 0.05). The smooth curve fitting assumed that the
expression trajectory for each gene followed a continuous time
pattern. The class of fifth-degree polynomials was chosen for the fits,
because it was the highest degree polynomial that did not interpolate
the time point means. Analysis was performed in R 1.7.1 (http://
www.r-project.org) using the Bioconductor suite of R packages.
Source code for the analysis, including the curve fitting procedure, is
available in Protocol S1.

GO analysis. GO analysis was performed using the 1 October 2003
build of the gene ontologies (http://www.geneontology.org) and the
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GO annotations for each probe set on the MGU74Av2 chip, provided
by Affymetrix (http:/lwww.affymetrix.com, downloaded 8 October
2003). The GO vocabulary structure was then instantiated as a
directed acyclic graph and traversed to obtain hit counts for the
genes in our lists that mapped at or below each node in the GO
structure. To assess the significance of gene counts at each term, the
annotations for the entire array were mapped to the GO structure,
and counts for the whole array were obtained at each GO term. The
significance of counts in particular categories was obtained via a
sampling-without-replacement statistical model for the gene counts
in each GO category.

The probability of a count of k genes to a GO node at some level of
the GO hierarchy was modeled according to the hypergeometric
probability law:

PX =) = B(C,k)B(L—C,n—k)
B(L,n)

(1)

In the formula, B(x,y) is the binomial coefficient for x choose y. The
value C is the total number of genes annotated to the GO node
under consideration for the entire gene set. The value of L is the
number of genes annotated to all nodes at the same level of the GO
hierarchy, again considering the entire arrayed gene set. The value
n is the number of genes annotated to terms at the same GO level
for the gene list under consideration. The p value (one sided) for
the node under consideration is obtained by summing probabilities
as determined by the formula for all values of X from k to n. A
web-based tool to perform this analysis on any gene list is
availableathttp://franklin.imgen.bcm.tmc.edu/OntologyTraverser.

The list distance metric was determined from the estimated joint
distribution of probe counts across the GO structure for each gene
list. This joint distribution was estimated by obtaining the counts at
each GO node at each level. Only those nodes with non-zero counts
in at least one list were included in the calculations. Relative
frequencies at each GO node at each GO level were obtained by
normalizing to the total counts at each level for each list. Once the
frequency distribution at each level was determined, a Kullback-
Leibler-like distance metric was constructed. Briefly, the distance
metric is a weighted average of Kullback-Leibler distances at each
level of the GO. The formula for computing distance between a pair
of lists is

D(li ) =Y K (pir pia)
k=1 (2

K(pispjn) = Zﬁi,k,vlogpi'k’y + Zpl,k,-,log@
y=1 Prry y=1 Digy

1

The weights o, were normalized to sum to one and were drawn from
the Poisson mass function with a mean of four. Since the GO levels
are ordered in terms of increasing specificity, the contribution of
cach level was weighted differently: positive weight was applied to the
middle of the GO hierarchy (levels 3-8), and weights for levels lower
than 3 and higher than 8 were set to 0. The indices i and j in the
formula indicate the lists being compared. The index k indicates the
level of the GO under consideration, and the index y considers each
GO node at the level k.

To compute the significance of our list dendrogram we determined
the probability that we could arrive at the grouping pattern by
chance. We determined the number of dendrograms with the “two
group” pattern divided by the total number of labeled dendrograms.
For our case, our “two group” dendrogram consisted of two subtrees
with three and five arms, respectively. The total number of labeled
dendrograms was the product of the number of labeled three-leaf
dendrograms (three) and the number of labeled five-leaf dendro-
grams (105), which is 415. We divided this number by the total
number of eight-leaf dendrograms (135,185) to attain the 0.003
probability. An R function for making this calculation is contained in
the R script provided in Protocol S1.

Chromosome analysis. Gene hits per chromosome were counted
for Q-sig and P-sig as well as the total MGU74Av2 chip. Number of
hits in our signatures was centered to the expected frequency of the
number of hits on the total chip using the following equation. The
number of hits above/below expected equals X — nP;, where X equals
the number of genes in list on chromosome i, n equals the total
number of genes in list, and P; equals the frequency of chromosome ¢
hits on total chip (which equals the number of genes on total chip on
chromosome : divided by the number of genes on total chip with
known chromosome position).

To determine the significance of enrichments and depletions of
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gene hits on each chromosome, we calculated a Z-score with the
following equation.
X —nP;
A (3)
1/ nP,»(l - P,‘)

Chromosome enrichment or depletion between signatures was
considered significant if the additive Z-score of Q-sig and P-sig was
significant to 0.02 < o < 0.05.

Supporting Information
Figure S1. Cell Cycle Analysis of HSCs

Cell cycle analysis of bone marrow SP cells before (left) and 6 d post
(right) 5FU treatment. Before treatment, approximately 2% of adult
quiescent HSCs are in cycle; 6 d after 5FU treatment, approximately
22% of HSCs are in cycle.

Found at DOI: 10.1371/journal.pbio.0020301.sg001 (2.0 MB EPS).
Figure S2. FACS Isolation of HSCs

(A) Representative flow cytometry plots of bone marrow enriched for
Scal™ cells at each time point. The indicated regions contain the SP
cells. The table shows prevalence and purity from several isolations.
(B) Representative flow cytometry analysis of fetal liver enriched for
c-Kit" cells.

Found at DOI: 10.1371/journal.pbio.0020301.sg002 (2.9 MB EPS).
Figure S3. Homogeneity of SP Cells

SP profile of adult HSCs and 5FU-HSCs 6 d post 5FU treatment.
Arrows point to analysis in SP cells of Scal and lineage marker
expression showing greater than 97% homogeneity for Scal™ and
Lineage  expression.

For analysis of adult HSCs on day 0, the lineage markers used were
Macl, CD4, CD8, B220, GR1, and Ter119. For analysis of 5FU-HSCs
on day 6, all of the above markers were used except for Macl, because
of its low level expression on HSCs after 5FU treatment.

Found at DOIL: 10.1371/journal.pbio.0020301.sg003 (2.2 MB EPS).

Protocol S1. R Script for Constructing Gene Lists
Found at DOI: 10.1371/journal.pbio.0020301.sd001 (8 KB TXT).

Table S1. Genes Up-Regulated in FL-HSCs
Found at DOT: 10.1371/journal.pbio.0020301.st001 (800 KB XLS).

Table S2. Genes in Proliferation Group
Found at DOL 10.1371/journal.pbio.0020301.st002 (666 KB XLS).

Table S3. Genes That Change over 5FU Treatment Time Course
Found at DOT: 10.1371/journal.pbio.0020301.5st003 (1.4 MB XLS).

Table S4. Genes in Quiescence Group
Found at DOT: 10.1371/journal.pbio.0020301.5st004 (790 KB XLS).

Table S5. Genes Up-Regulated in Adult HSCs
Found at DOL 10.1371/journal.pbio.0020301.st005 (933 KB XLS).

Table S6. Genes in P-Sig
Found at DOL 10.1371/journal.pbio.0020301.st006 (336 KB XLS).

Table S7. Genes in Q-Sig
Found at DOL 10.1371/journal.pbio.0020301.st007 (296 KB XLS).

Table S8. Genes in ST-HSC Signature
Found at DOI: 10.1371/journal.pbio.0020301.st008 (164 KB XLS).

Table S9. Genes in LT-HSC Signature
Found at DOIL: 10.1371/journal.pbio.0020301.st009 (77 KB XLS).

Table S10. Genes in Common P-Sig
Found at DOI: 10.1371/journal.pbio.0020301.st010 (122 KB XLS).

Table S11. Genes in Common Q-Sig
Found at DOI: 10.1371/journal.pbio.0020301.st011 (59 KB XLS).

Table S12. Genes in TOMO Group of Q-Sig
Found at DOI: 10.1371/journal.pbio.0020301.5st012 (62 KB XLS).
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Table S13. Genes in TOM1 Group of Q-Sig
Found at DOI: 10.1371/journal.pbio.0020301.5t013 (70 KB XLS).

Table S14. Genes in TOM10 Group of Q-Sig
Found at DOI: 10.1371/journal.pbio.0020301.st014 (169 KB XLS).

Table S15. Genes in TOM30 Group of Q-Sig
Found at DOL: 10.1371/journal.pbio.0020301.st015 (45 KB XLS).

Table S16. Genes in TOM3 Group of P-Sig
Found at DOI: 10.1371/journal.pbio.0020301.5t016 (52 KB XLS).

Table S17. Genes in TOM2 Group of P-Sig
Found at DOI: 10.1371/journal.pbio.0020301.st017 (18 KB XLS).

Table S18. Genes in TOM6 Group of P-Sig

Found at DOI: 10.1371/journal.pbio.0020301.st018 (280 KB XLS).
Table S19. Lists of GO Groups Enriched in Adult HSCs, FL-HSCs, and
TOM Groups

Found at DOI: 10.1371/journal.pbio.0020301.st019 (2 KB XLS).
Table S20. Genes in Q-Sig, P-Sig, Common Q-Sig, and Common P-Sig
in the GO Category “Cell Cycle”

Found at DOI: 10.1371/journal.pbio.0020301.st020 (7 KB XLS).
Table S21. Genes in Q-Sig, P-Sig, Common Q-Sig, and Common P-Sig
in the GO Category “Cell-Cell Adhesion”

Found at DOI: 10.1371/journal.pbio.0020301.st021 (3 KB XLS).
Table S22. Genes in P-Sig in the GO Category “ATP-Synthesis-
Coupled Electron Transport”

Found at DOI: 10.1371/journal.pbio.0020301.st022 (6 KB XLS).

Table S23. Genes in P-Sig in the GO Category “DNA Replication”
Found at DOI: 10.1371/journal.pbio.0020301.st023 (8 KB XLS).
Table S24. Genes in P-Sig in the GO Category “Cell Cycle
Checkpoint”

Found at DOI: 10.1371/journal.pbio.0020301.st024 (6 KB XLS).

Table $25. Genes in P-Sig in the GO Category “Hydrogen Transport”
Found at DOI: 10.1371/journal.pbio.0020301.st025 (7 KB XLS).
Table $26. Genes in Q-Sig in the GO Category “Regulation of Cell
Cycle”

Found at DOI: 10.1371/journal.pbio.0020301.st026 (7 KB XLS).

Table S27. Genes in Q-Sig in the GO Category “Defense Response”
Found at DOI: 10.1371/journal.pbio.0020301.st027 (9 KB XLS).
Table S28. Genes in Q-Sig in the GO Category “Protein Kinase
Cascade”

Found at DOI: 10.1371/journal.pbio.0020301.st028 (7 KB XLS).

Table S29. Genes in Q-Sig in the GO Category “Cell-Cell Adhesion”
Found at DOI: 10.1371/journal.pbio.0020301.st029 (6 KB XLS).
Table S30. TOM1 Genes within GO Categories and the Fold
Enrichment of Each Category

Found at DOI: 10.1371/journal.pbio.0020301.st030 (92 KB XLS).
Table S31. TOM1 Genes within GO Categories That Were Signifi-
cantly Enriched

Found at DOI: 10.1371/journal.pbio.0020301.st031 (31 KB XLS).
Table S32. TOMI10 Genes within GO Categories and the Fold
Enrichment of Each Category

Found at DOI: 10.1371/journal.pbio.0020301.5st032 (136 KB XLS).
Table S33. TOM10 Genes within GO Categories That Were
Significantly Enriched

Found at DOL: 10.1371/journal.pbio.0020301.5t033 (45 KB XLS).
Table S34. Genes Up-Regulated in Adult HSCs within GO Categories
and the Fold Enrichment of Each Category

Found at DOI: 10.1371/journal.pbio.0020301.5st034 (244 KB XLS).
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Table S35. Genes Up-Regulated in Adult HSCs within GO Categories
That Were Significantly Enriched

Found at DOIL: 10.1371/journal.pbio.0020301.st035 (14 KB XLS).

Table S36. TOMO Genes within GO Categories and the Fold
Enrichment of Each Category

Found at DOIL: 10.1371/journal.pbio.0020301.st036 (52 KB XLS).

Table $37. TOMO Genes within GO Categories That Were Signifi-
cantly Enriched

Found at DOI: 10.1371/journal.pbio.0020301.st037 (8 KB XLS).

Table S38. TOM30 Genes within GO Categories and the Fold
Enrichment of Each Category

Found at DOI: 10.1371/journal.pbio.0020301.5st038 (61 KB XLS).

Table S$39. TOM30 Genes within GO Categories That Were
Significantly Enriched
Found at DOL: 10.1371/journal.pbio.0020301.st039 (14 KB XLS).

Table S40. TOM3 Genes within GO Categories and the Fold
Enrichment of Each Category
Found at DOI: 10.1371/journal.pbio.0020301.5st040 (65 KB XLS).

Table S41. TOM3 Genes within GO Categories That Were Signifi-
cantly Enriched

Found at DOI: 10.1371/journal.pbio.0020301.st041 (32 KB XLS).

Table S42. TOMG6 Genes within GO Categories and the Fold
Enrichment of Each Category

Found at DOI: 10.1371/journal.pbio.0020301.st042 (215 KB XLS).

Table S43. Lists of TOM6 Genes within GO Categories That Were
Significantly Enriched

Found at DOI: 10.1371/journal.pbio.0020301.st043 (199 KB XLS).

Table S44. Lists of Genes Up-Regulated in FL-HSCs within GO
Categories and the Fold Enrichment of Each Category

Found at DOL 10.1371/journal.pbio.0020301.st044 (244 KB XLS).

Table S45. Genes Up-Regulated in FL-HSCs within GO Categories
That Were Significantly Enriched

Found at DOL 10.1371/journal.pbio.0020301.st045 (14 KB XLS).

Table $46. GeneChip Robust Multichip Analysis Normalized Data and
Filtering Information

Found at DOI: 10.1371/journal.pbio.0020301.st046 (9.7 MB XLS).

Table S47. Goodness of Fit within Each TOM Group

This table gives the 0.25, 0.5, and 0.75 quartile of the gene
correlations (Pearson’s) to their TOM group mean shown in Figure
2A and 2C.

Found at DOIL: 10.1371/journal.pbio.0020301.st047 (27 KB DOC).

Accession Numbers

The LocusLink (http://lwww.ncbi.nlm.nih.gov/LocusLink/) accession
numbers for the genes and gene products discussed in this paper
are BTG1 (Locuslink 12226), Btg3/APRO4 (Locuslink 12228), CD48
(Locuslink 12506), c-fos (Locuslink 14281), c-maf (Locuslink 17134),
cyclin G1 (Locuslink 12450), Endoglin (Locuslink 13805), GADD450
(Locuslink 17873), GATA-2 (Locuslink 14461), histone deacetylase 5
(Locuslink 15184), IGFIR (Locuslink 16001), melanoma antigen,
family D, 1 (Locuslink 94275), p21 (Locuslinkl12575), receptor
tyrosine kinase Tiel (Locuslink 21846), serine proteinase inhibitor
A-3 g (Locuslink 20715), SOCS3 (Locuslink 12702), STATS (Locuslink
20848), STAT6 (Locuslink 20852), Suppressor of cytokine signaling 3
(Locuslink 12702), TIMP3 (Locuslink 21859), Tob 1/APRO6 (Locuslink
22057), and a4-integrin (Locuslink 16401). The GEO (www.ncbi.nlm.
nih.gov/geo) accession numbers for microarrays discussed in this

paper are GSM26734-GSM26749.
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